BOOKS BY CATEGORY
Your Account
Tactile Sensing and Display
Haptic Feedback For Minimally Invasive Surgery And Robotics
This book is currently unavailable – please contact us for further information.
Price
Quantity
£76.50
(To see other currencies, click on price)
Other digital
Add to basket  

MORE ABOUT THIS BOOK

Main description:

Comprehensively covers the key technologies for the development of haptic perception in minimally invasive surgery


Covering the timely topic of tactile sensing and display in minimally invasive and robotic surgery, this book comprehensively explores new techniques which could dramatically reduce the need for invasive procedures. The tools currently used in minimally invasive surgery (MIS) lack any sort of haptic feedback, significantly reducing the performance of these types of procedures. This book systematically explains the various technologies which the most prominent researchers have proposed to overcome the problem. Furthermore, the authors put forward their own findings, which have been published in recent patents and patent applications. These solutions offer original and creative means of surmounting the current drawbacks of MIS and robotic surgery.


Key features:



  • Comprehensively covers topics of this ground–breaking technology including tactile sensing, force sensing, tactile display, PVDF fundamentals

  • Describes the mechanisms, methods and sensors that measure and display kinaesthetic and tactile data between a surgical tool and tissue

  • Written by authors at the cutting–edge of research into the area of tactile perception in minimally invasive surgery

  • Provides key topic for academic researchers, graduate students as well as professionals working in the area


Back cover:

Comprehensively covers the key technologies for the development of haptic perception in minimally invasive surgery


Covering the timely topic of tactile sensing and display in minimally invasive and robotic surgery, this book comprehensively explores new techniques which could dramatically reduce the need for invasive procedures. The tools currently used in minimally invasive surgery (MIS) lack any sort of haptic feedback, significantly reducing the performance of these types of procedures. This book systematically explains the various technologies which the most prominent researchers have proposed to overcome the problem. Furthermore, the authors put forward their own findings, which have been published in recent patents and patent applications. These solutions offer original and creative means of surmounting the current drawbacks of MIS and robotic surgery.


Key features:



  • Comprehensively covers topics of this ground–breaking technology including tactile sensing, force sensing, tactile display, PVDF fundamentals

  • Describes the mechanisms, methods and sensors that measure and display kinaesthetic and tactile data between a surgical tool and tissue

  • Written by authors at the cutting–edge of research into the area of tactile perception in minimally invasive surgery

  • Provides key topic for academic researchers, graduate students as well as professionals working in the area


Contents:

Preface xi


About the Authors xiii


1 Introduction to Tactile Sensing and Display 1


1.1 Background 1


1.2 Conventional and Modern Surgical Techniques 3


1.3 Motivation 4


1.4 Tactile Sensing 5


1.5 Force Sensing 5


1.6 Force Position 5


1.7 Softness Sensing 6


1.8 Lump Detection 7


1.9 Tactile Sensing in Humans 8


1.10 Haptic Sense 8


1.10.1 Mechanoreception 8


1.10.2 Proprioceptive Sense 11


1.11 Tactile Display Requirements 11


1.12 Minimally Invasive Surgery (MIS) 12


1.12.1 Advantages/Disadvantages of MIS 13


1.13 Robotics 14


1.13.1 Robotic Surgery 17


1.14 Applications 17


References 18


2 Tactile Sensing Technologies 23


2.1 Introduction 23


2.2 Capacitive Sensors 25


2.3 Conductive Elastomer Sensors 25


2.4 Magnetic–Based Sensors 26


2.5 Optical Sensors 27


2.6 MEMS–Based Sensors 28


2.7 Piezoresistive Sensors 29


2.7.1 Conductive Elastomers, Carbon, Felt, and Carbon Fibers 30


2.8 Piezoelectric Sensors 31


References 34


3 Piezoelectric Polymers: PVDF Fundamentals 37


3.1 Constitutive Equations of Crystals 37


3.2 IEEE Notation 42


3.3 Fundamentals of PVDF 43


3.4 Mechanical Characterization of Piezoelectric Polyvinylidene Fluoride Films: Uniaxial and Biaxial 44


3.4.1 The Piezoelectric Properties of Uniaxial and Biaxial PVDF Films 45


3.5 The Anisotropic Property of Uniaxial PVDF Film and Its Influence on Sensor Applications 47


3.6 The Anisotropic Property of Biaxial PVDF Film and Its Influence on Sensor Applications 51


3.7 Characterization of Sandwiched Piezoelectric PVDF Films 51


3.8 Finite Element Analysis of Sandwiched PVDF 53


3.8.1 Uniaxial PVDF Film 55


3.8.2 Biaxial PVDF Film 58


3.9 Experiments 59


3.9.1 Surface Friction Measurement 60


3.9.2 Experiments Performed on Sandwiched PVDF for Different Surface Roughness 61


3.10 Discussion and Conclusions 64


References 65


4 Design, Analysis, Fabrication, and Testing of Tactile Sensors 67


4.1 Endoscopic Force Sensor: Sensor Design 68


4.1.1 Modeling 68


4.1.2 Sensor Fabrication 71


4.1.3 Experimental Analysis 73


4.2 Multi–Functional MEMS Based Tactile Sensor: Design, Analysis, Fabrication, and Testing 77


4.2.1 Sensor Design 77


4.2.2 Finite Element Modeling 81


4.2.3 Sensor Fabrication 84


4.2.4 Sensor Assembly 92


4.2.5 Testing and Validation: Softness Characterization 93


References 97


5 Bulk Softness Measurement Using a Smart Endoscopic Grasper 99


5.1 Introduction 99


5.2 Problem Definition 99


5.3 Method 100


5.4 Energy and Steepness 104


5.5 Calibrating the Grasper 105


5.6 Results and Discussion 106


References 111


6 Lump Detection 113


6.1 Introduction 113


6.2 Constitutive Equations for Hyperelasticity 113


6.2.1 Hyperelastic Relationships in Uniaxial Loading 114


6.3 Finite Element Modeling 117


6.4 The Parametric Study 119


6.4.1 The Effect of Lump Size 120


6.4.2 The Effect of Depth 122


6.4.3 The Effect of Applied Load 123


6.4.4 The Effect of Lump Stiffness 124


6.5 Experimental Validation 125


6.6 Discussion and Conclusions 127


References 128


7 Tactile Display Technology 131


7.1 The Coupled Nature of the Kinesthetic and Tactile Feedback 132


7.2 Force–Feedback Devices 134


7.3 A Review of Recent and Advanced Tactile Displays 134


7.3.1 Electrostatic Tactile Displays for Roughness 134


7.3.2 Rheological Tactile Displays for Softness 136


7.3.3 Electromagnetic Tactile Displays (Shape Display) 137


7.3.4 Shape Memory Alloy (SMA) Tactile Display (Shape) 138


7.3.5 Piezoelectric Tactile Display (Lateral Skin Stretch) 138


7.3.6 Air Jet Tactile Displays (Surface Indentation) 140


7.3.7 Thermal Tactile Displays 141


7.3.8 Pneumatic Tactile Displays (Shape) 142


7.3.9 Electrocutaneous Tactile Displays 142


7.3.10 Other Tactile Display Technologies 142


References 143


8 Grayscale Graphical Softness Tactile Display 147


8.1 Introduction 147


8.2 Graphical Softness Display 147


8.2.1 Feedback System 148


8.2.2 Sensor 148


8.2.3 Data Acquisition System 150


8.2.4 Signal Processing 150


8.2.5 Results and Discussion 155


8.3 Graphical Representation of a Lump 156


8.3.1 Sensor Structure 157


8.3.2 Rendering Algorithm 158


8.3.3 Experiments 165


8.3.4 Results and Discussion 167


8.4 Summary and Conclusions 169


References 169


9 Minimally Invasive Robotic Surgery 171


9.1 Robotic System for Endoscopic Heart Surgery 173


9.2 da Vinci and Amadeus Composer Robot Surgical System 174


9.3 Advantages and Disadvantages of Robotic Surgery 176


9.4 Applications 178


9.4.1 Practical Applications of Robotic Surgery Today 180


9.5 The Future of Robotic Surgery 181


References 182


10 Teletaction 185


10.1 Introduction 185


10.2 Application Fields 186


10.2.1 Telemedicine or in Absentia Health Care 186


10.2.2 Telehealth or e Health 187


10.2.3 Telepalpation, Remote Palpation, or Artificial Palpation 187


10.2.4 Telemanipulation 189


10.2.5 Telepresence 190


10.3 Basic Elements of a Teletaction System 191


10.4 Introduction to Human Psychophysics 191


10.4.1 Steven s Power Law 194


10.4.2 Law of Asymptotic Linearity 196


10.4.3 Law of Additivity 197


10.4.4 General Law of Differential Sensitivity 198


10.5 Psychophysics for Teletaction 199


10.5.1 Haptic Object Recognition 199


10.5.2 Identification of Spatial Properties 204


10.5.3 Perception of Texture 206


10.5.4 Control of Haptic Interfaces 206


10.6 Basic Issues and Limitations of Teletaction Systems 208


10.7 Applications of Teletaction 209


10.8 Minimally Invasive and Robotic Surgery (MIS and MIRS) 209


10.9 Robotics 212


10.10 Virtual Environment 213


References 215


11 Teletaction Using a Linear Actuator Feedback–Based Tactile Display 223


11.1 System Design 223


11.2 Tactile Actuator 224


11.3 Force Sensor 225


11.4 Shaft Position Sensor 227


11.5 Stress Strain Curves 228


11.6 PID Controller 228


11.6.1 Linear Actuator Model 230


11.6.2 Verifying the Identification Results 232


11.6.3 Design of the PID Controller 233


11.7 Processing Software 237


11.8 Experiments 237


11.9 Results and Discussion 238


11.10 Summary and Conclusion 241


References 244


12 Clinical and Regulatory Challenges for Medical Devices 245


12.1 Clinical Issues 245


12.2 Regulatory Issues 247


12.2.1 Medical Product Jurisdiction 248


12.2.2 Types of Medical Devices 248


12.2.3 Medical Device Classification 249


12.2.4 Determining Device Classification 250


12.3 Medical Device Approval Process 251


12.3.1 Design Controls 252


12.3.2 The 510 (K) Premarket Notifications 252


12.3.3 The Premarket Approval Application 254


12.3.4 The Quality System Regulation 255


12.4 FDA Clearance of Robotic Surgery Systems 256


References 256


Index 259


PRODUCT DETAILS

ISBN-13: 9781118357989
Publisher: John Wiley & Sons Ltd (Wiley–Blackwell)
Publication date: November, 2012
Pages: 288
Dimensions: 150.00 x 250.00 x 15.00
Weight: 666g
Availability: Availability uncertain
Subcategories: General

CUSTOMER REVIEWS

Average Rating