BOOKS BY CATEGORY
Your Account
XUV Pump-Probe Experiments on Diatomic Molecules
Tracing the Dynamics of Electron Rearrangement and Interatomic Coulombic Decay
Series: Springer Theses
This book is currently unavailable – please contact us for further information.
Price
Quantity
€109.80
(To see other currencies, click on price)
Hardback
Add to basket  

MORE ABOUT THIS BOOK

Main description:

This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.


Feature:

Nominated as an outstanding Ph.D. thesis by Max Planck Institute for Nuclear Physics, Heidelberg, Germany

Introductory chapters with numerous clear illustrations make the topic accessible to non-experts

Presents measurement of novel relaxation mechanism with overview of theoretical treatment


Back cover:

This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.


Contents:

Introduction.- Photoionization and Interatomic Coulombic Decay.- Free-Electron Lasers.- Experimental Setup.- Data Analysis.- Ionization Dynamics of I2 in XUV and IR Laser Pulses.- ICD Lifetime in Ne2.- Conclusions and Outlook.- Appendices.


PRODUCT DETAILS

ISBN-13: 9783319121383
Publisher: Springer (Springer International Publishing)
Publication date: January, 2015
Pages: 213
Weight: 473g
Availability: Not available (reason unspecified)
Subcategories: Radiology
Related books
From the same series

CUSTOMER REVIEWS

Average Rating