BOOKS BY CATEGORY
Your Account
Selected Topics in Image Science
Price
Quantity
€139.08
(To see other currencies, click on price)
Paperback / softback
Add to basket  

MORE ABOUT THIS BOOK

Main description:

The continuing growth of computed tomography (CT) and other imaging techniques motivated us to bring together a comprehensive review of the state of the art in diagnostic imaging. Twelve years after the first appearance of x-ray CT, computerized diagnostic imaging has grown so rapidly in sophistication that it is difficult to follow current developments in this diversified field. In this book, we have attempted to cover the basic developments in several areas. The first part includes some of the fundamental aspects of computerized diagnostic imaging such as algorithms and detectors. Specific applications in emission tomography, digital radiography, ultrasound and nuclear magnetic resonance imaging are dealt with in the secondpart. The contributed papers are by experts currently in the field, whom we feel would certainly enlighten the subject matter and possibly suggest directions for future development. We would like to express our sincere thanks to those who have contributed to this volume. We are sure that their original papers will be beneficial for readers and will also remain as an important reference for researchers in the years to come. We would also like to thank Betty Trent for her expert and patient typing of the entire book. Finally, special thanks are due to Mrs. Ingeborg Mayer of Springer-Verlag for her encouragements, support and patience throughout the preparation of this book.


Contents:

Methods and Algorithms Toward 3-D Volume Image Reconstruction with Projections.- 1. Introduction.- 2. Reconstruction Algorithms.- 2.1. Preliminary.- 2.2. Two-Dimensional Image Reconstruction Algorithms.- 2.2.1. Filtered Backprojection Algorithm.- 2.2.2. Backprojection Filtering Algorithm.- 2.2.3. Direct Fourier Transform Reconstruction.- 2.3. Three-Dimensional Image Reconstruction Algorithms for Complete Sphere.- 2.3.1. Line Integral Projection Data.- 2.3.2. Plane Integral Projection Reconstruction.- 3. Algorithm for Generalized Volume Image Reconstruction.- 3.1. Preliminary.- 3.2. Theoretical Background.- 3.3. Basic Formulation.- 3.4. Formulation of a Practically Implementable Algorithm.- 3.5. Generality of the TTR Algorithm.- Extended TTR Algorithm for Volume Imaging.- 4.1. Preliminary.- 4.2. Theoretical Analysis.- 5. Conclusion.- References.- Direct Fourier Reconstruction Techniques in NMR Tomography.- 1. Introduction.- 2. Image Formation with Direct Fourier Transformation.- 2.1. Direct Fourier Reconstruction Method of Mersereau and Oppenheim: Polar Raster Sampled Data.- 2.2. Direct Fourier Reconstruction Methods of Kumar-Welti-Ernst (KWE) and Hutchison - Cartesian Raster Sampled Data.- 3. Computer Simulation Results.- 3.1. Simulated Images by the Direct Fourier Reconstruction Methods of Mersereau-Oppenheim.- 3.2. Simulated Images with the KWE and Hutchison-KWE Methods.- 4. Conclusion.- References.- Radiation Detectors for CT Instrumentation.- 1. Introduction.- 2. Historical Perspective.- 3. Basic Theoretical Concepts.- 3.A. Terminology.- 3.B. Luminescence.- 4. Candidates.- 4.A. Halides.- 4.B. Oxides.- 5. Advanced Concepts.- 5.A. DISCO.- 5.B. New Scintillators.- 6. New Sensors.- References.- Positron Emission Tomography - Basic Principles, Corrections and Camera Design.- 1. Basic Principles.- 1.1. Positron Physics.- 1.2. Detectors and Detector Materials.- 1.3. Detection Elements.- 1.3.1. Coincidence Detection Element.- 1.3.2. Time of Flight.- 1.4. Reconstruction Methods.- 1.4.1. Tomographic Reconstructions.- 1.4.2. Time of Flight Reconstructions.- 1.5. Noise.- 1.6. Sampling Considerations.- 1.7. Multiple Coincidence Events.- 1.8. Space Variant Resolution and Sampling.- 2. Corrections.- 2.1. Random Coincidences.- 2.2. Triple Coincidences.- 2.3. Scattered Radiation.- 2.4. Attenuation Correction.- 2.5. Efficiency Variations.- 2.6. Artefacts.- 3. Positron Camera Design.- 3.1. Historical Remarks.- 3.2. Geometry.- 3.3. Planar Positron Camera System.- 3.4. Sampling Schemes of Ring Detector Systems.- 3.5. Different Ring Detector Systems.- 3.6. Future Developments.- References.- Single Photon Emission Computed Tomography: Potentials and Limitations.- 1. Introduction.- 2. Review of SPECT System Configuration.- 3. Photon Imaging Process for Lesion Detection.- 4. Factors Affecting Signal Level and Lesion Contrast in SPECT.- 5. Factors Affecting SPECT Image Noise.- 6. SPECT Lesion Detectability Equation.- 7. SPECT Lesion Detectability Estimate.- 8. Summary and Discussions.- References.- Energy Selective Digital Radiography.- 1. Introduction.- 2. Vector Space Descriptions of the X-ray Attenuation Coefficient.- 3. Attenuation Coefficients and Line Integrals.- 4. Computation of Energy Selective Information.- 5. Material Selective Images.- 6. Tissue Characterization..- 7. Hybrid Subtraction.- 8. Signal and Noise in Energy Selective Radiography....- References.- Matched Filtering for Digital Subtraction Angiography.- 1. Introduction.- 2. SNR Optimum Technique - Matched Filter.- 3. Matched Filter Performance.- 4. Summary.- References.- Functional Analysis of Angiograms by Digital Image Processing Techniques.- 1. Imaging of Structure and Function.- 2. Motion Analysis and Function.- 3. Development of Videoangiographic Image Analysis.- 4. Image Processing Techniques for Motion Extraction.- 4.1. Digital Subtraction Angiography.- 4.2. Parametric Imaging.- 4.3. Tracking or Matching.- 4.4. Comparison of Motion Extraction Techniques.- 5. Parameter Extraction for Angiograms.- 5.1. Image Acquisition.- 5.2. Preprocessing Techniques.- 5.3. Time Parameter Extraction.- 5.4. Amplitude Parameter Extraction.- 5.5. Applications of Parametric Imaging.- 6. Quantitative Volume Flow Measurements.- 7. Conclusion.- References.- Acoustical Imaging: History, Applications, Principles and Limitations.- 1. Introduction..- 2. History, Principles and Applications.- 2.A. The Early Pioneers.- 2.B. Intensity-Mapping Systems.- 2.C. Pulse-Echo Systems.- 2.D. Phase-Amplitude Systems.- 2.E. Discussion.- 3. Digital Processing of Acoustical Images.- 4. Potential, Limitations and Tradeoffs.- 5. Conclusions.- References.- Ultrasound Tomography by Galerkin or Moment Methods.- 1. Introduction.- 2. Ultrasonic Imaging by Solution of the Inverse Scattering Problem.- 3. Formulation of Equations Which May Be Solved for Direct and Inverse Scattering Solutions.- 4. Algebraic Scattering Equations Derived Using Sine Basis Functions.- 5. Methods for Solving Model Equations for Case of ?p = o.- 6. Results of Computer Simulation Studies.- 7. Summary..- References.- NMR Imaging: Principles, Algorithms and Systems.- 1. Introduction.- 2. Principles of NMR Tomography.- 2.A. Principles of NMR Physics.- 2.B. Bloch Equation.- 2. C. Relaxation Times.- 3. Image Formation Algorithms.- 3. A. Direct Fourier Transform Imaging.- 3.B. Line-Integral Projection Reconstruction.- 3.C. Plane-Integral Projection Reconstruction.- 3.D. Imaging Modes.- 4. Some Instrumentation Problems and Requirements.- 4.A. Selection of Slices by 90 Degrees RF Pulses.- 4.B. Rise Time Effect of Gradient Pulse on Image Quality.- 4.C. Correction of Phase Instability.- 5. Proposed Scheme: An Example Applied to the Projection Reconstruction.- 6. Conclusions..- References.


PRODUCT DETAILS

ISBN-13: 9783642932557
Publisher: Springer (Springer-Verlag Berlin and Heidelberg GmbH & Co. K)
Publication date: February, 2012
Pages: 324
Weight: 562g
Availability: Available
Subcategories: General Issues, General Practice

CUSTOMER REVIEWS

Average Rating