Your Account
Fluctuation Theory of Solutions
Applications in Chemistry, Chemical Engineering, and Biophysics
(To see other currencies, click on price)
Add to basket  


Main description:

There are essentially two theories of solutions that can be considered exact: the McMillan-Mayer theory and Fluctuation Solution Theory (FST). The first is mostly limited to solutes at low concentrations, while FST has no such issue. It is an exact theory that can be applied to any stable solution regardless of the number of components and their concentrations, and the types of molecules and their sizes. Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics outlines the general concepts and theoretical basis of FST and provides a range of applications described by experts in chemistry, chemical engineering, and biophysics. The book, which begins with a historical perspective and an introductory chapter, includes a basic derivation for more casual readers. It is then devoted to providing new and very recent applications of FST. The first application chapters focus on simple model, binary, and ternary systems, using FST to explain their thermodynamic properties and the concept of preferential solvation.
Later chapters illustrate the use of FST to develop more accurate potential functions for simulation, describe new approaches to elucidate microheterogeneities in solutions, and present an overview of solvation in new and model systems, including those under critical conditions. Expert contributors also discuss the use of FST to model solute solubility in a variety of systems. The final chapters present a series of biological applications that illustrate the use of FST to study cosolvent effects on proteins and their implications for protein folding. With the application of FST to study biological systems now well established, and given the continuing developments in computer hardware and software increasing the range of potential applications, FST provides a rigorous and useful approach for understanding a wide array of solution properties. This book outlines those approaches, and their advantages, across a range of disciplines, elucidating this robust, practical theory.


Fluctuation Solution Theory: A Primer Paul E. Smith, Enrico Matteoli, and John P. O'Connell Global and Local Properties of Mixtures: An Expanded Paradigm for the Study of Mixtures Arieh Ben-Naim Preferential Solvation in Mixed Solvents Yizhak Marcus Kirkwood-Buff Integrals in Fully Miscible Ternary Systems: Thermodynamic Data, Calculation, Representation, and Interpretation Enrico Matteoli, Paolo Gianni, and Luciano Lepori Accurate Force Fields for Molecular Simulation Elizabeth A. Ploetz, Samantha Weerasinghe, Myungshim Kang, and Paul E. Smith Fluctuation Solution Theory Properties from Molecular Simulation Jens Abildskov, Rasmus Wedberg, and John P. O'Connell Concentration Fluctuations and Microheterogeneity in Aqueous Mixtures: New Developments in Analogy with Microemulsions Aurelien Perera Solvation Phenomena in Dilute Solutions: Formal Results, Experimental Evidence, and Modeling Implications Ariel A. Chialvo Molecular Thermodynamic Modeling of Fluctuation Solution Theory Properties John P. O'Connell and Jens Abildskov Solubilities of Various Solutes in Multiple Solvents: A Fluctuation Theory Approach Ivan L. Shulgin and Eli Ruckenstein Why Is Fluctuation Solution Theory Indispensable for the Study of Biomolecules? Seishi Shimizu Osmophobics and Hydrophobics: The Changing Landscape of Protein Folding Matthew Auton and B. Montgomery Pettitt References Index


ISBN-13: 9781439899236
Publisher: Taylor & Francis (CRC Press Inc)
Publication date: February, 2013
Pages: 400
Dimensions: 156.00 x 235.00 x 26.00