Your Account
The Soft–Hard Tissue Junction
Structure, Mechanics and Function
This book is currently unavailable – please contact us for further information.
(To see other currencies, click on price)
Add to basket  


Main description:

Richly illustrated throughout with actual tissue images, this innovative book shows that the soft-hard tissue junction is best understood in a biomechanical context. The authors describe their pioneering experimental methods, providing an essential structure-function framework for computational modelling, and thereby encouraging the development of more realistic, predictive models of this important tissue junction. Covering the three main musculoskeletal junctions of cartilage-bone, disc-vertebra, and ligament/tendon-bone, the relevant soft tissues are examined with respect to both their own inherent structure and their mode of integration with the hard tissue. The soft-hard tissue interface is explored with a focus on structural damage resulting from overloading, and its associated pathologies. Adopting a multiscale approach, ranging in structural resolution from the macro to fibril levels, this is a must-have guide to the field and an ideal resource for researchers seeking new and creative approaches for studying the joint and spine tissues.


Part I. The Osteochondral System: 1. General principles relating to the joint tissues and their function; 2. The osteochondral junction; 3. Failure of the osteochondral junction; 4. Shear failure of the osteochondral junction; 5. A large in vivo model exploring extreme physiological loading of the osteochondral tissues; Part II. The Intervertebral Disc-Endplate System: 6. Relevant anatomy and macro-level structure; 7. The elastic fibre component in the disc; 8. Detailed analysis of the disc-endplate system; 9. Structure of the nucleus and its relation to annulus and endplate; 10. Experimental investigation of failure of the annulus-endplate junction region; 11. Endplate involvement in whole disc failure; 12. Micromechanics of failure of the disc-endplate system under realistic loading; Part III. The Enthesis: 13. Tendon and ligament biomechanics; 14. The enthesis: composition, structure and function; 15. Exploring enthesis structure-function relationships; 16. Managing the modulus mismatch.


ISBN-13: 9781107137868
Publisher: Cambridge University Press
Publication date: November, 2018
Pages: 424
Weight: 571g
Availability: Not yet available
Subcategories: Biomedical Engineering


Average Rating