Your Account
Spike Timing
Mechanisms and Function
(To see other currencies, click on price)
Add to basket  


Main description:

Neuronal communication forms the basis for all behavior, from the smallest movement to our grandest thought processes. Among the many mechanisms that support these functions, spike timing is among the most powerful and—until recently—perhaps the least studied. In the last two decades, however, the study of spike timing has exploded. The heightened interest is due to several factors. These include the development of physiological tools for measuring the activity of neural ensembles and analytical tools for assessing and characterizing spike timing. These advances are coupled with a growing appreciation of spike timing’s theoretical importance for the design principles of the brain.

Spike Timing: Mechanisms and Function examines the function of spike timing in sensory, motor, and integrative processes, providing readers with a broad perspective on how spike timing is produced and used by the nervous system. It brings together the work and ideas of leaders in the field to address current thinking as well as future possibilities.

The first section of the book describes the foundation for quantitative analysis and theory. It examines the information contained in spike timing, how it can be quantified, and how neural systems can extract it. The second section explores how input-output relationships are reflected in spike timing across a range of sensory systems.

Drawing together multiple perspectives, including theoretical and computational studies as well as experimental studies in a range of model systems, the book provides a firm background for investigators to consider spike timing as it applies to their own work. It also offers a glimpse of future advances related to mechanisms of spike timing and its role in neural function, such as the development of novel computational technologies.


Spike Timing: Tools and Models
Spike Trains as Event Sequences: Fundamental Implications; Jonathan D. Victor and Sheila Nirenberg
Neural Coding and Decoding with Spike Times; Ran Rubin, Robert Gütig, and Haim Sompolinsky
Can We Predict Every Spike? Richard Naud and Wolfram Gerstner
Statistical Identification of Synchronous Spiking; Matthew T. Harrison, Asohan Amarasingham, and Robert E. Kass
Binless Estimation of Mutual Information in Metric Spaces; Ayelet-Hashahar Shapira, and Israel Nelken
Measuring Information in Spike Trains about Intrinsic Brain Signals; Gautam Agarwal and Friedrich T. Sommer
Role of Oscillation-Enhanced Neural Precision in Information Transmission between Brain Areas; Paul H. Tiesinga, Saša Koželj, and Francesco P. Battaglia
Spike Timing: Coding, Decoding, and Sensation
Timing Information in Insect Mechanosensory Systems; Alexander G. Dimitrov and Zane N. Aldworth
Neural Encoding of Dynamic Inputs by Spike Timing; Matthew H. Higgs and William J. Spain
Relating Spike Times to Perception: Auditory Detection and Discrimination; Laurel H. Carney
Spike Timing and Neural Codes for Odors; Sam Reiter and Mark Stopfer
Spike Timing as a Mechanism for Taste Coding in the Brainstem; Patricia M. Di Lorenzo
Increases in Spike Timing Precision Improves Gustatory Discrimination upon Learning; Ranier Gutierrez and Sidney A. Simon
Spike Timing in Early Stages of Visual Processing; Paul R. Martin and Samuel G. Solomon
Cortical Computations Using Relative Spike Timing; Timothy J. Gawne


ISBN-13: 9781439838167
Publisher: Taylor & Francis (CRC Press)
Publication date: May, 2013
Pages: 431



Patricia M. Di Lorenzo is Professor and Director of the Undergraduate Program in Psychobiology at Binghamton University, New York. Jonathan D. Victor is Fred Plum Professor of Neurology at Weill Medical College of Cornell University, New York.